EEG的临床应用

  1. 儿童精神病理研究中EEG生物标记的使用现状和未来方向Research Review: Use of EEG biomarkers in child psychiatry research – current state and future directions

研究思路-如何从EEG的思路提出科学问题

  1. 皮层振荡(cortical oscillations)或神经振荡(Neural oscillations)在某种认知 功能中扮演什么样的作用?某种频段中的神经振荡能够反映(对应)认知或行为活动中的表现吗?
  2. 某个脑区在某种认知活动中的激活与某个频段的特征有什么关系?Relationship between activation and oscillation feature.
  3. 认知功能的改善对应频段的什么变化?频段特征变化之后认知功能

常见频段

EEG信号按频谱不同可划分为四种基本类型:

  1. α波:频率分布为8-13HZ,主要包含两个波段,μ1(8-10HZ)和μ2(10-13HZ),振幅约为20-100μV,在枕页及顶叶候补α波最显著。
  2. β波:频率在(13-30HZ)包含两个波段β1(13-20HZ),β2(20-30HZ),振幅约为5-20μV,主要出现在额叶。
  3. θ波:频率在4-7HZ,振幅约为100-150μV,在困倦时出现,是中枢神经系统抑制的表现。
  4. δ波:频率在0.5-3.5HZ,振幅约为0-200μV,只出现在睡眠,深度麻醉,缺氧或大脑病变时出现。

按照清醒(α, β,)和睡眠(θ,δ)可以分为两类。

常见特征(EEG signal features)

常用EEG实验范式

  1. 睡眠质量评估的4种基于EEG的实验范式: https://doi.org/10.1109/embc44109.2020.9176055

2.

常用ERP实验范式和对应典型ERP-EEG指标

Active Visual Oddball

常见单试次(single trial)EEG范式

定义

  1. Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG.

脑电实验打mark

参考

方法类

  1. https://www.aesthetics.mpg.de/en/the-institute/people/xiangbin-teng.html
  2. Ertl, M., et al. (2013). “Emotion regulation by cognitive reappraisal—the role of frontal theta oscillations.” NeuroImage 81: 412-421.
  3. Li, X., et al. (2017). “The impact of mood on empathy for pain: Evidence from an EEG study.” Psychophysiology 54(9): 1311-1322.
  4. https://blog.csdn.net/youzi12345678/article/details/89321276
  5. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains
  6. Selection of relevant features for EEG signal classification of schizophrenic patients
  7. Towards the utlization of EEG as a brain imaging tool
  8. Hu, L., & Zhang, Z. (Eds.). (2019). EEG Signal Processing and Feature Extraction. Springer Singapore.
  9. PLV综述 van Diepen, R. M., & Mazaheri, A. (2018). The caveats of observing inter-trial phase-coherence in cognitive neuroscience. Scientific reports, 8(1), 1-9.

实证研究 (suggested by Professor Hu Li)

  1. An oscillartory mechanism for prioritizing salient unattended stimuli
  2. Low-frequency neuronal oscillations as instruments of sensory selection
  3. Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation
  4. Voloh, B., Valiante, T. A., Everling, S., & Womelsdorf, T. (2015). Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts. Proceedings of the National Academy of Sciences, 112(27), 8457-8462.
  5. Spontaneous fluctuations in posterior a-band eeg activity reflect variablity in excitability of human visual areas
  6. The functional significance of mu rhythms: translating “seing” and “hearing” into “doing”
  7. Oscillatory activity reflects the excitability of the human somatosensory system
  8. Pre-stimulus alpha rhythms are correlated with post-stimulus sensorimotor performance in athletes and non-athletes: a high resolution EEG study
  9. New vistas for a-frequency band oscillations
  10. Neural oscillations involved in self-referential processing 10 Fluctuations of prestimulus oscillartory power predict subjective perception of tactile simultaneity
  11. Neuronal gamma-band synchronization as a fundamental process in cortical computation
  12. Ploner, M., Sorg, C., & Gross, J. (2017). Brain rhythms of pain. Trends in cognitive sciences, 21(2), 100-110.